Extrusion-Based 3D Printing of Molecular Sieve Zeolite for Gas Adsorption Applications




Abstract:Extrusion based 3D printing is one of the emerging additive manufacturing technologies used for printing range of materials from metal to ceramics. In this study, we developed a customized 3D printer based on extrusion freeform fabrication technique, such as slurry deposition, for 3D printing of different molecular sieve zeolite monoliths like 3A, 4A, 5A and 13X to evaluate their performance in gas adsorption. The physical and structural properties of 3D printed zeolite monoliths will be characterized along with the gas adsorption performance. The Brunauer– Emmett–Teller (BET) test of 3D printed samples will be performed for calculation of the surface area, which will give us the capacity of gas absorption into 3D printed zeolite. The BET surface area test showed good results for Zeolite 13X compared to available literature. The surface area calculated for 3D – printed Zeolite 13X was 767m2/g and available literature showed 498 m2/g for 3D – printed Zeolite 13X. The microhardness values of 3D – printed Zeolite samples were measured using a Vicker hardness tester. The hardness value of the 3D – printed Zeolite samples increased from 8.3 ± 2 to 12.5 ± 3 HV 0.05 for Zeolite 13X, 3.3 ± 1 to 7.3 ± 1 HV 0.05 for Zeolite 3A, 4.3 ± 2 to 7.5 ± 2 HV 0.05 for Zeolite 4A, 7.4 ± 1 to 14.0 ± 0.5 HV 0.05 for Zeolite 5A, before and after sintering process, respectively. The SEM analysis was performed for 3D printed samples before and after sintering to evaluate their structural properties. The SEM analysis reveals that all 3D – printed Zeolite samples retained their microstructure after slurry preparation and also after the sintering process. The porous nature of 3D – printed Zeolite walls was retained after the sintering process.

Authors: Nishant Hawaldar, Hye-Young Park, Yeon-Gil Jung, and Jing Zhang

Keywords: AExtrusion – based 3D printing, Molecular sieve zeolite, Gas adsorption

Additional information

Page Count

8 pages


PDF Download